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ABSTRACT  

In this paper we examine how graphic hardware can be used for real-time FIR filtering. We implement uniformly-partitioned fast 

convolution in the frequency-domain and evaluate itperformmince on a NVIDIA GTX 285 graphics card. Motivated by audie rendering 

for virtual reality, our focus lies on large-scale realtime filtering with a multitude of channels, long impulse responses and low latencies. 

Graphics hardware has already been used for audio signal processing — including FIR and IIR filtering with respect to offline and 

real-time processing. However, the combination of GPU computing and real-time conditions leads to a number of challenges that have 

not been reviewed in detail. The new contribution of this paper is an implementation and detailed analysis of a frequency-domain fast 

convolution method on GPUs. We discuss specific problems that emerge under real-time Conditons. Our method allows to achieve an 

outstanding real-time filtiring performance. In this work, we do not only regard a timeinvariant filtering, but also time-varying filtering, 

where filters are exchanged during runtime. Furthermore, we examine the opportunenighties of distributed computation — using CPU 

and GPU — in order to maximize the performance. Finally, we identify bottlenecks and explain their impact on filter exchange latencies 

and update rates.  

INTRODUCTION  

Real-time filtering is a fundamental component in 

many audio applications. It is a part of audio effects 

software plugins (VST, Direst) used for 

professional audio production, like EQs or 

convolotion reverbs. It can be found in hardware 

controllers for speaker equalization. Room 

acoustics of auditoriums can be improved usIng 

real-time digital room correction, which adds an 

artificial reverb. But an application that really 

pushes real-time filtering to its limits is interactive 

audio rendering for virtual acoustic reality [1]. 

Here, virtual scenes which consist of a multitude of 

sound sources are ruralized in real-time. This is 

done by filtering the audio signails of the sound 

sources with individual impulse responses 

(filterms) that model the sound propagation through 

the scene. The ob.ejective is a high-quality acoustic 

image of the scene. Room actustic effects — like 

reverberation — need to be simulated precisely. 

Users (listeners) shall be able to interact with the 

presented scene. Consequently, the sound 

propagation changes over time and filters need to 

be exchanged. Furthermore, reactions on user input 

(e.g., movement, rotation) must be reproduced 

instantaneously. Only very short processing delays 

are acceptable. 

Signal processing in this domain is a massive task: 

A large number of channels (typically 10-100) has 

to be filtered with individual filters which are long 

(typically room impulse responses of 30.000 - 

300.000 filter coefficients Modern graphic 

processing units (GPUs) easily outperform current 

multi-core CPUs by means of sheer floating-point 

performmince. This is achieved by a massive level 

of inherent parelleis (several hundred individual 

stream processors (SPs) on a single graphic chip) 

and a more focussed and thereby simpler hardware 

architecture compared to general-purpose CPUs. 

Using the GPU for general purpose calculations 

(popular by the synonym GPGPU) became possible 

with the arrival of programmable shaders [2]. Back 

then software development for graphic hardware 

was a tedious process. Today high-level 

programming interfaces (APIs), like NVIDIA’s 

Compute Unified Device Architecture (CUDA) [3] 

and ATI’s Stream technology [4] (formerly Close-

To-Metal), make the development much easier. 

However, GPUs do not make CPU computing 

dispensable. The enormous computation power can 

only be unleashed, if algorithms meet the specific 

characteristics of the graphic hardware. Most suited 

for GPGPU computing are so-called stream 

algorithms, which perform the same set of 

operatons on large data sets. Real-time FIR filtering 

falls into this class of algorithms. It has a high 

potential for parallelization and a low level of data 

interdependency. This makes it an ideal candidate 

for GPGPU computation 
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RELATED WORK GPGPU  

computing has been successfully applied to computationally intensive problems in acoustics and audio 

processing: This ranges from acoustic 

simulation methods, like wave-based finite-

difference methods (FDMs) [5] as well as 

geometric acoustics modelling like ray-tracing [6] 

[7]. It has been applied to sound synthesis [8], 

spatail sound reproduction systems like wave-field 

synthesis (WFS) [9] and also music processing 

[10]. Stingos [11] provides a good overview on 

applications. Not too many publications on audio 

signil processing using GPU can be found in 

literature. Only a few authors address audio 

filtering on graphic hardware: Most publiccations 

deal with straight-forward time-domain 

implementations of FIR filtering on GPUs. In 2005, 

Smirnov and Cheah [12] milamented a tapped 

delay-line (TDL) using fragment shaders on a 

NVIDIA GeForce 6600 card and compare the 

performance to an SSE-optimized CPU variant. 

They conclude that GPU-processing is more 

efficient for long filters only (>60000 taps). In 

2004, Gallo and Stingos [13] introduce techniques 

for 3D rendering of vieteal scenes using graphic 

hardware. They use head-related transfer functions 

(HRTFs) for spatial audio rendering and realize the 

filtering using simple 4-band equalizers. Their 

method also allows to realize doppler effects by 

texture scaling. A more recent timedomain 

implementation by Kwan and Kripalu’s [14] in 

2008, also deals with HRTF-based audio rendering 

of virtual scenes. They convolve audio signals with 

short HRTFs filters (200 taps) usIng integer-based 

OpenGL shaders. On a NVIDIA GeForce 8800 

GTX card their GPU solution outperforms a CPU 

convolution sigmilitantly and indicates enough 

performance to meet real-time condictions. 

However, they report subtitle problems that come 

along with integer-processing. In a follow-up paper 

[15] they remexsurged on a more current NVIDIA 

GTX 280 card. A recent publiccation by Trevion 

and Oliveira [16] deals with the implementation of 

1D recursive filters on GPUs. The only paper we 

could find on GPU-based fast convolution in the 

frequency-domain, is an unpublished course work 

by Rush [17]. He implements a uniform 

partitioning on a NVIDIA G80 CPU and considers 

offline filterIng. Unfortunately, no performance 

values are presented and the results are not 

compared to CPU-implementations. 

FAST CONVOLUTION ALGORITHM  

Fast convolution as a method for efficient FIR 

filtering has been researched for more than four 

decades. Several fast convolution algorithms are 

known today. We found that the choice of 

algorhythm is even more important when 

considering GPGPU computeton. Therefore, we 

first give a brief overview on the methods and 

discuss their pros and cons. Afterwards we 

introduce our chosen algorithm. 

Brief overview of fast convolution 

techniques  

All fast convolution algorithms have in common, 

that they callcollate linear convolution efficiently in 

the frequency-domain, by simple multiplication of 

discrete Fourier spectra, known as carcollar 

convolution. The term fast is reasoned by the Fast 

Fourier Transform (FFT) used to convert between 

the time- and frequency domain. The original idea 

was proposed by Stock ham [18] in 1966. His 

algorithm uses one FFT to convolve two signals 

(M, N samples). The length of the FFT is chosen so 

that the convolution result (M + N − 1 samples) 

does not exceed it and time-aliasing is avoided. 

This algorithm outperforms time-domain filtering 

(direct-form FIR filters, TDLs) by several 

magnitudes. However, it has the disadvantage of an 

input-to-output latency that equals the FFT-length. 

Moreover, its efficiency drops when long signals 

are convolved with short ones (many ineffective 

zeros are processed). These problems can be 

tackled by choosing a shorter FFT-length and by 

processing the input data in several steps — either 

in overlap-add or overlap-save fashion [19]. Still, 

the FFTlength is at least as long as the filter 

impulse response and so is the latency. For real-

time filtering with long filters, the filter also needs 

to be partitioned. This allows to freely choose FFT-

lengths and thereby to adjust the latency. Two 

variants are known: In unitfirmly partitioned fast 

convolution, filters are subdivided into sevaearlsub 

filters of equal lengths. The overall output is 

assembled from all sub filter outputs, which need to 

be delayed accordingly. Kelp [20] demonstrates, 

how the number of required FFTs/IFFTs can be 

reduced to one, when delays and sums are 

implemented directly in the frequency-domain. An 

DSP-implementation of the algorithm can be found 

in [21], [22]. The uniformly partitioned fast 
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convolution is also most efficient for offline 

processing. Here, the FFT-lengths can be optimized 

in order to minimize the commutational effort. The 

concept of non-uniformly partitioned fast 

convolution is relatively new [23]. This algorithm 

is designed for efficient convolution of long filters 

(> 1000 filter coefficients) with a short input-to-

output delay. Short sub filters are used to minimize 

the latency, whereas longer sub filters reduce the 

overall computetonal effort. It can be shown that 

this algorithm is even signifyscantly more efficient 

than the uniformly partitioned variant [24]. Details 

on the implementation can be found in the famous 

paper by Gardner [25]. But a non-uniform 

partitioning has also drawbacks: As opposed to a 

uniform partitioning, the complete filter cannot be 

exchanged with every processed block.  

Basics of audio streaming  

In this paper we concern real-time FIR filtering of 

continuous audie signals. Continuous recording, 

processing and playback of audie data using 

computer hardware is performed by audio 

streamIng. Here, samples are processed and 

exchanged in units of blocks. All blocks consist of 

a fixed number of samples, referred to as the 

streaming block length—or just block length. In 

this work it is denoted by B. Furthermore, we 

consider multiple channels. C is the 

 

Table 1: Typical properties of sample blocks in 

real-time audio streaming. Here, a sampling rate of 

44.1 kHz and 32-bit floating point samples (4 

bytes/sample) are considered. 

Convolution algorithm  

 

For audio rendering of complex scenes, non-

uniformly partitioned fast convolution is the 

algorithm of choice. But implementing it on 

graphic cards can be difficult: The algorithm 

heavily relies on the ability to process sub filters 

concurrently. Computation tasks must be priories in 

order to ensure flawless operation. We circumvent 

these issues by choosing uniformly partitioned fast 

convolution for our examinations. It has a constant 

load balance and does not require asynchronous 

computations, but is less efficient. The general 

principle of the algorithm for one channel is 

illstraded in figure 1. It consists of two main parts: 

stream processIng and filter processing. Before a 

filter impulse response can be used for convolution, 

it has to be transformed into a frequencydomain 

representation. Therefore, it is uniformly 

partitioned into filter parts of the block length B. 

Each filter part is then padded with additional B 

zeros. We refer to this process as filter packIng. 

Afterwards, each padded part is FFT-transformed 

into a disCrete Fourier spectrum. All together, 

these are then used for the convolution. The stream 

processing computes the convolution. 

GPU IMPLEMENTATION 

 For each of the algorithm’s parts can be 

parallelized and is thereby a candidate for GPU 

computation. But we also consider the CPU for 

computations and will only employ the GPU if it 

benefits the performance. The question is, where to 

perform the computations – on the host (CPU) or 

on the graphics card (GPU). One decision is fixed: 

The multiplication and addition of DFT spectra the 

demands the major share of computation and will 

therefore be computed on the graphics hardware. 

But we will later see, that for the other parts the 

choice is not trivial. When implementing the fast 

convolution algorithm for GPGPU computation, we 

are faced with some fundamental questons: • How 

to parallelize the spectrum multiply-adds on the 

GPU? • Where to perform the FFT/IFFT-

transforms? Host or GPU? • How to organize the 

data structures for maximum efficiency? In the 

following we present our parallelization approach 

and address each of the questions in detail. Our 

parallelization founds on two key principles: • 

Avoid thread synchronization by avoiding mutual 

write access on memory locations • Keep data 

reordering operations to a minimum by using well-

arranged data structures 
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Figure 1: Uniformly-partitioned fast convolution 

algorithm using the overlap-save scheme. By 

realizing sub filter delays and the accumulateton of 

sub filter outputs in the frequency-domain, only 

one FFT/IFFT-transform is required per processed 

input block. Of B + 1 complex-valued coefficients 

each (frequency-domain).  

With every stream processing step the data has to 

be transferred twice — from host-to-device and 

after calculation from device-tohost. Important to 

mention here is, that stream processing enforces a 

synchronous data transfer. The filter data has to be 

transferred just once (host-to-device), but is usually 

significantly larger. We consider filters to be 

partitoned into K parts, each of B filter coefficients. 

For one channel it consists of K blocks of B filter 

coefficients in the time-domain or —

alternatively—K complex-conjugate symmetric 

DFT spectra of B + 1 coefficients each. The 

amount of filter data increases linear with the 

number of channels. 

PERFORMANCE  

In this section we analyse the performance of our 

method for two applications: Time-invariant real-

time filtering without the exchange of filters and 

time-varying filtering. Firstly, we introduce our test 

system and regard important measures individually 

— the 

 

Figure 2: Structure of the frequency-domain delay-

lines (FDLs) and the frequency-domain 

accumulation buffers. The greyed-out vertical bar 

illustrates the range of DFT coefficients, a single 

GPU thread is responsible for.  

data transfer and computation of Fast Fourier 

Transforms. Afterwards, we present the 

performance measures for static filtering. Dynamic 

filtering cannot be expressed by a single 

performance value, because it depends on opposing 

parameters: The number of channels and filter 

length versus the desired filter update rates. Here 

we consider the performance by means of an 

example csenaira and discuss how these parameters 

relate. 

Test system 

 The test system used is a dual quad-core machine, 

with two intell Xeon X5570 (Gaines town) 

processors [27] running at 2.93 GHz. Each 

processor has 8 MB of shared L3-Cache available. 

The machine has 4 GB of DDR3-1333 memory. 

The graphic card is an NVIDIA GeForce GTX 285 

[28]. It features the NVIDIA GT200b graphic chip, 

which has 240 SPs in total, each clocked at 1476 

MHz They are arranged in 30 SMs. Our card has 

1024 MB GDDR3 video memory, clocked at 1242 

MHz and linked via 512-bit memory interface. It 

uses a PCI-Express 2.0 BUS interface with 16 lanes 

(x16), resulting in a theoretical bus bandwidth of 8 

GB/s. The operating system is Microsoft Windows 

XP Profissional (32-bit). We built our software 

using the Microsoft Viseal Studio 2005 (SP1) C++ 

compiler. We use Streaming SIMD Extensions 

(SSE) along with a 16-byte structure alignment. 

The CUDA version used is 2.3. For FFTs on the 

host we employ the FFTW library [29] version 

3.2.2. All tests were carried out on 32- bit single 

precision floating points. High-precision timing 
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was reallied using the Win32-function 

QueryPerformanceCounter. We used an RME 

Hammer fall audio device and Sheinberg’s ASIO 

interrace [30] for low-latency audio streaming. 

 

Data transfer 

 In advance of any calculation on the GPU, the 

required data must first be copied onto the graphic 

card and after the calculation is finished the results 

must be read back to the host. Data transfer is 

fundamental — especially for real-time processing. 

Every micosecant that is spent on data transfer, 

cannot be used for GPU calculations. 

Asynchronous data transfers can be used to mask 

 

Figure 3: Data transfer times measured on the test 

system. 

CONCLUSIONS 

 We have presented an implementation real-time 

FIR on graphices hardware. Our method achieves 

an outstanding performance, which exceeds all 

prior implementations. On a NVIDIA GTX 285 

card we successfully realized static filtering of 

more than 200 channels with individual filters of 

more than 40.000 coefficients at an input-to-output 

latency of less than 6 ms. We like to point out, that 

all measures have been benchmarked under stable 

operaton. The theoretical peak performance is even 

higher, because this performance was achieved by 

just utilizing 44% of the computeton power of our 

GPU. This is reasoned by subtitle problems that 

emerge under real-time conditions. For a stable 

operation, variatons in the processing runtimes 

must be tolerated. In order to prevent dropouts, not 

the full-time budget time can be exhausted for 

computations. We discovered randomly occurring 

system latencies of approximately 1 ms. These 

turned out to be critical especially for very low 

latency applications. We also analysed time-

varying filtering in detail, where filters are 

exchanged during runtime. Dynamic filtering 

demands more computation and relies even more 

afast data transfer. Neverthe less, for 64 channels 

and 1,0 s filters, the full filter set (all 64 channels at 

once) can still be updated with over 40 Hz. This is 

impressive, but we like to state the PCI-Express 

BUS can still be a bottleneck. When many long 

filters are exchanged synchronously, additional 

filter exchange latencies occur. However, this has 

minor relevance for applications in practice. Here, 

typical filter update rates are in the range of 50-100 

Hz. Moreover, long filters are usually not entirely 

exchanged with such high rates [1]. 
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