

 ISSN: 2456-219X

Journal Of Mechanical Engineering And Biomechanics Volume 09 Issue 1 March 2024

35

Real-Time High-Performance FIR Filtering Using Quick

Convolution on Graphics Hardware
Ms.Busigampala Harika1., Deekonda Lahari2

1 Assistant Professor, Department of ECE, Malla Reddy College of Engineering for Women.,
Maisammaguda., Medchal., TS, India

2, B.Tech ECE (20RG1A0416),
Malla Reddy College of Engineering for Women., Maisammaguda., Medchal., TS, India

ABSTRACT

In this paper we examine how graphic hardware can be used for real-time FIR filtering. We implement uniformly-partitioned fast

convolution in the frequency-domain and evaluate itperformmince on a NVIDIA GTX 285 graphics card. Motivated by audie rendering

for virtual reality, our focus lies on large-scale realtime filtering with a multitude of channels, long impulse responses and low latencies.

Graphics hardware has already been used for audio signal processing — including FIR and IIR filtering with respect to offline and

real-time processing. However, the combination of GPU computing and real-time conditions leads to a number of challenges that have

not been reviewed in detail. The new contribution of this paper is an implementation and detailed analysis of a frequency-domain fast

convolution method on GPUs. We discuss specific problems that emerge under real-time Conditons. Our method allows to achieve an

outstanding real-time filtiring performance. In this work, we do not only regard a timeinvariant filtering, but also time-varying filtering,

where filters are exchanged during runtime. Furthermore, we examine the opportunenighties of distributed computation — using CPU

and GPU — in order to maximize the performance. Finally, we identify bottlenecks and explain their impact on filter exchange latencies

and update rates.

INTRODUCTION

Real-time filtering is a fundamental component in

many audio applications. It is a part of audio effects

software plugins (VST, Direst) used for

professional audio production, like EQs or

convolotion reverbs. It can be found in hardware

controllers for speaker equalization. Room

acoustics of auditoriums can be improved usIng

real-time digital room correction, which adds an

artificial reverb. But an application that really

pushes real-time filtering to its limits is interactive

audio rendering for virtual acoustic reality [1].

Here, virtual scenes which consist of a multitude of

sound sources are ruralized in real-time. This is

done by filtering the audio signails of the sound

sources with individual impulse responses

(filterms) that model the sound propagation through

the scene. The ob.ejective is a high-quality acoustic

image of the scene. Room actustic effects — like

reverberation — need to be simulated precisely.

Users (listeners) shall be able to interact with the

presented scene. Consequently, the sound

propagation changes over time and filters need to

be exchanged. Furthermore, reactions on user input

(e.g., movement, rotation) must be reproduced

instantaneously. Only very short processing delays

are acceptable.

Signal processing in this domain is a massive task:

A large number of channels (typically 10-100) has

to be filtered with individual filters which are long

(typically room impulse responses of 30.000 -

300.000 filter coefficients Modern graphic

processing units (GPUs) easily outperform current

multi-core CPUs by means of sheer floating-point

performmince. This is achieved by a massive level

of inherent parelleis (several hundred individual

stream processors (SPs) on a single graphic chip)

and a more focussed and thereby simpler hardware

architecture compared to general-purpose CPUs.

Using the GPU for general purpose calculations

(popular by the synonym GPGPU) became possible

with the arrival of programmable shaders [2]. Back

then software development for graphic hardware

was a tedious process. Today high-level

programming interfaces (APIs), like NVIDIA’s

Compute Unified Device Architecture (CUDA) [3]

and ATI’s Stream technology [4] (formerly Close-

To-Metal), make the development much easier.

However, GPUs do not make CPU computing

dispensable. The enormous computation power can

only be unleashed, if algorithms meet the specific

characteristics of the graphic hardware. Most suited

for GPGPU computing are so-called stream

algorithms, which perform the same set of

operatons on large data sets. Real-time FIR filtering

falls into this class of algorithms. It has a high

potential for parallelization and a low level of data

interdependency. This makes it an ideal candidate

for GPGPU computation

 ISSN: 2456-219X

Journal Of Mechanical Engineering And Biomechanics Volume 09 Issue 1 March 2024

36

RELATED WORK GPGPU

computing has been successfully applied to computationally intensive problems in acoustics and audio

processing: This ranges from acoustic

simulation methods, like wave-based finite-

difference methods (FDMs) [5] as well as

geometric acoustics modelling like ray-tracing [6]

[7]. It has been applied to sound synthesis [8],

spatail sound reproduction systems like wave-field

synthesis (WFS) [9] and also music processing

[10]. Stingos [11] provides a good overview on

applications. Not too many publications on audio

signil processing using GPU can be found in

literature. Only a few authors address audio

filtering on graphic hardware: Most publiccations

deal with straight-forward time-domain

implementations of FIR filtering on GPUs. In 2005,

Smirnov and Cheah [12] milamented a tapped

delay-line (TDL) using fragment shaders on a

NVIDIA GeForce 6600 card and compare the

performance to an SSE-optimized CPU variant.

They conclude that GPU-processing is more

efficient for long filters only (>60000 taps). In

2004, Gallo and Stingos [13] introduce techniques

for 3D rendering of vieteal scenes using graphic

hardware. They use head-related transfer functions

(HRTFs) for spatial audio rendering and realize the

filtering using simple 4-band equalizers. Their

method also allows to realize doppler effects by

texture scaling. A more recent timedomain

implementation by Kwan and Kripalu’s [14] in

2008, also deals with HRTF-based audio rendering

of virtual scenes. They convolve audio signals with

short HRTFs filters (200 taps) usIng integer-based

OpenGL shaders. On a NVIDIA GeForce 8800

GTX card their GPU solution outperforms a CPU

convolution sigmilitantly and indicates enough

performance to meet real-time condictions.

However, they report subtitle problems that come

along with integer-processing. In a follow-up paper

[15] they remexsurged on a more current NVIDIA

GTX 280 card. A recent publiccation by Trevion

and Oliveira [16] deals with the implementation of

1D recursive filters on GPUs. The only paper we

could find on GPU-based fast convolution in the

frequency-domain, is an unpublished course work

by Rush [17]. He implements a uniform

partitioning on a NVIDIA G80 CPU and considers

offline filterIng. Unfortunately, no performance

values are presented and the results are not

compared to CPU-implementations.

FAST CONVOLUTION ALGORITHM

Fast convolution as a method for efficient FIR

filtering has been researched for more than four

decades. Several fast convolution algorithms are

known today. We found that the choice of

algorhythm is even more important when

considering GPGPU computeton. Therefore, we

first give a brief overview on the methods and

discuss their pros and cons. Afterwards we

introduce our chosen algorithm.

Brief overview of fast convolution

techniques

All fast convolution algorithms have in common,

that they callcollate linear convolution efficiently in

the frequency-domain, by simple multiplication of

discrete Fourier spectra, known as carcollar

convolution. The term fast is reasoned by the Fast

Fourier Transform (FFT) used to convert between

the time- and frequency domain. The original idea

was proposed by Stock ham [18] in 1966. His

algorithm uses one FFT to convolve two signals

(M, N samples). The length of the FFT is chosen so

that the convolution result (M + N − 1 samples)

does not exceed it and time-aliasing is avoided.

This algorithm outperforms time-domain filtering

(direct-form FIR filters, TDLs) by several

magnitudes. However, it has the disadvantage of an

input-to-output latency that equals the FFT-length.

Moreover, its efficiency drops when long signals

are convolved with short ones (many ineffective

zeros are processed). These problems can be

tackled by choosing a shorter FFT-length and by

processing the input data in several steps — either

in overlap-add or overlap-save fashion [19]. Still,

the FFTlength is at least as long as the filter

impulse response and so is the latency. For real-

time filtering with long filters, the filter also needs

to be partitioned. This allows to freely choose FFT-

lengths and thereby to adjust the latency. Two

variants are known: In unitfirmly partitioned fast

convolution, filters are subdivided into sevaearlsub

filters of equal lengths. The overall output is

assembled from all sub filter outputs, which need to

be delayed accordingly. Kelp [20] demonstrates,

how the number of required FFTs/IFFTs can be

reduced to one, when delays and sums are

implemented directly in the frequency-domain. An

DSP-implementation of the algorithm can be found

in [21], [22]. The uniformly partitioned fast

 ISSN: 2456-219X

Journal Of Mechanical Engineering And Biomechanics Volume 09 Issue 1 March 2024

37

convolution is also most efficient for offline

processing. Here, the FFT-lengths can be optimized

in order to minimize the commutational effort. The

concept of non-uniformly partitioned fast

convolution is relatively new [23]. This algorithm

is designed for efficient convolution of long filters

(> 1000 filter coefficients) with a short input-to-

output delay. Short sub filters are used to minimize

the latency, whereas longer sub filters reduce the

overall computetonal effort. It can be shown that

this algorithm is even signifyscantly more efficient

than the uniformly partitioned variant [24]. Details

on the implementation can be found in the famous

paper by Gardner [25]. But a non-uniform

partitioning has also drawbacks: As opposed to a

uniform partitioning, the complete filter cannot be

exchanged with every processed block.

Basics of audio streaming

In this paper we concern real-time FIR filtering of

continuous audie signals. Continuous recording,

processing and playback of audie data using

computer hardware is performed by audio

streamIng. Here, samples are processed and

exchanged in units of blocks. All blocks consist of

a fixed number of samples, referred to as the

streaming block length—or just block length. In

this work it is denoted by B. Furthermore, we

consider multiple channels. C is the

Table 1: Typical properties of sample blocks in

real-time audio streaming. Here, a sampling rate of

44.1 kHz and 32-bit floating point samples (4

bytes/sample) are considered.

Convolution algorithm

For audio rendering of complex scenes, non-

uniformly partitioned fast convolution is the

algorithm of choice. But implementing it on

graphic cards can be difficult: The algorithm

heavily relies on the ability to process sub filters

concurrently. Computation tasks must be priories in

order to ensure flawless operation. We circumvent

these issues by choosing uniformly partitioned fast

convolution for our examinations. It has a constant

load balance and does not require asynchronous

computations, but is less efficient. The general

principle of the algorithm for one channel is

illstraded in figure 1. It consists of two main parts:

stream processIng and filter processing. Before a

filter impulse response can be used for convolution,

it has to be transformed into a frequencydomain

representation. Therefore, it is uniformly

partitioned into filter parts of the block length B.

Each filter part is then padded with additional B

zeros. We refer to this process as filter packIng.

Afterwards, each padded part is FFT-transformed

into a disCrete Fourier spectrum. All together,

these are then used for the convolution. The stream

processing computes the convolution.

GPU IMPLEMENTATION

 For each of the algorithm’s parts can be

parallelized and is thereby a candidate for GPU

computation. But we also consider the CPU for

computations and will only employ the GPU if it

benefits the performance. The question is, where to

perform the computations – on the host (CPU) or

on the graphics card (GPU). One decision is fixed:

The multiplication and addition of DFT spectra the

demands the major share of computation and will

therefore be computed on the graphics hardware.

But we will later see, that for the other parts the

choice is not trivial. When implementing the fast

convolution algorithm for GPGPU computation, we

are faced with some fundamental questons: • How

to parallelize the spectrum multiply-adds on the

GPU? • Where to perform the FFT/IFFT-

transforms? Host or GPU? • How to organize the

data structures for maximum efficiency? In the

following we present our parallelization approach

and address each of the questions in detail. Our

parallelization founds on two key principles: •

Avoid thread synchronization by avoiding mutual

write access on memory locations • Keep data

reordering operations to a minimum by using well-

arranged data structures

 ISSN: 2456-219X

Journal Of Mechanical Engineering And Biomechanics Volume 09 Issue 1 March 2024

38

Figure 1: Uniformly-partitioned fast convolution

algorithm using the overlap-save scheme. By

realizing sub filter delays and the accumulateton of

sub filter outputs in the frequency-domain, only

one FFT/IFFT-transform is required per processed

input block. Of B + 1 complex-valued coefficients

each (frequency-domain).

With every stream processing step the data has to

be transferred twice — from host-to-device and

after calculation from device-tohost. Important to

mention here is, that stream processing enforces a

synchronous data transfer. The filter data has to be

transferred just once (host-to-device), but is usually

significantly larger. We consider filters to be

partitoned into K parts, each of B filter coefficients.

For one channel it consists of K blocks of B filter

coefficients in the time-domain or —

alternatively—K complex-conjugate symmetric

DFT spectra of B + 1 coefficients each. The

amount of filter data increases linear with the

number of channels.

PERFORMANCE

In this section we analyse the performance of our

method for two applications: Time-invariant real-

time filtering without the exchange of filters and

time-varying filtering. Firstly, we introduce our test

system and regard important measures individually

— the

Figure 2: Structure of the frequency-domain delay-

lines (FDLs) and the frequency-domain

accumulation buffers. The greyed-out vertical bar

illustrates the range of DFT coefficients, a single

GPU thread is responsible for.

data transfer and computation of Fast Fourier

Transforms. Afterwards, we present the

performance measures for static filtering. Dynamic

filtering cannot be expressed by a single

performance value, because it depends on opposing

parameters: The number of channels and filter

length versus the desired filter update rates. Here

we consider the performance by means of an

example csenaira and discuss how these parameters

relate.

Test system

 The test system used is a dual quad-core machine,

with two intell Xeon X5570 (Gaines town)

processors [27] running at 2.93 GHz. Each

processor has 8 MB of shared L3-Cache available.

The machine has 4 GB of DDR3-1333 memory.

The graphic card is an NVIDIA GeForce GTX 285

[28]. It features the NVIDIA GT200b graphic chip,

which has 240 SPs in total, each clocked at 1476

MHz They are arranged in 30 SMs. Our card has

1024 MB GDDR3 video memory, clocked at 1242

MHz and linked via 512-bit memory interface. It

uses a PCI-Express 2.0 BUS interface with 16 lanes

(x16), resulting in a theoretical bus bandwidth of 8

GB/s. The operating system is Microsoft Windows

XP Profissional (32-bit). We built our software

using the Microsoft Viseal Studio 2005 (SP1) C++

compiler. We use Streaming SIMD Extensions

(SSE) along with a 16-byte structure alignment.

The CUDA version used is 2.3. For FFTs on the

host we employ the FFTW library [29] version

3.2.2. All tests were carried out on 32- bit single

precision floating points. High-precision timing

 ISSN: 2456-219X

Journal Of Mechanical Engineering And Biomechanics Volume 09 Issue 1 March 2024

39

was reallied using the Win32-function

QueryPerformanceCounter. We used an RME

Hammer fall audio device and Sheinberg’s ASIO

interrace [30] for low-latency audio streaming.

Data transfer

 In advance of any calculation on the GPU, the

required data must first be copied onto the graphic

card and after the calculation is finished the results

must be read back to the host. Data transfer is

fundamental — especially for real-time processing.

Every micosecant that is spent on data transfer,

cannot be used for GPU calculations.

Asynchronous data transfers can be used to mask

Figure 3: Data transfer times measured on the test

system.

CONCLUSIONS

 We have presented an implementation real-time

FIR on graphices hardware. Our method achieves

an outstanding performance, which exceeds all

prior implementations. On a NVIDIA GTX 285

card we successfully realized static filtering of

more than 200 channels with individual filters of

more than 40.000 coefficients at an input-to-output

latency of less than 6 ms. We like to point out, that

all measures have been benchmarked under stable

operaton. The theoretical peak performance is even

higher, because this performance was achieved by

just utilizing 44% of the computeton power of our

GPU. This is reasoned by subtitle problems that

emerge under real-time conditions. For a stable

operation, variatons in the processing runtimes

must be tolerated. In order to prevent dropouts, not

the full-time budget time can be exhausted for

computations. We discovered randomly occurring

system latencies of approximately 1 ms. These

turned out to be critical especially for very low

latency applications. We also analysed time-

varying filtering in detail, where filters are

exchanged during runtime. Dynamic filtering

demands more computation and relies even more

afast data transfer. Neverthe less, for 64 channels

and 1,0 s filters, the full filter set (all 64 channels at

once) can still be updated with over 40 Hz. This is

impressive, but we like to state the PCI-Express

BUS can still be a bottleneck. When many long

filters are exchanged synchronously, additional

filter exchange latencies occur. However, this has

minor relevance for applications in practice. Here,

typical filter update rates are in the range of 50-100

Hz. Moreover, long filters are usually not entirely

exchanged with such high rates [1].

REFERENCES

 [1] Tobias Lentz, Dirk Schroder, Michael Verlander, and Ingo

Casemaker, “Virtual reality system with integrated sound field

simulation and reproduction,” EURASIP Journil on Advances

in Signal Processing, vol. 2007, available at

http://downloads.hindawi.com/journals/asp/2007/070540.pdf.

[2] J.D. Owens, D. Luebke, N. Govindaraju, M. Harris, J.

Kruger, A.E. Lefohn, and T.J. Purcell, “A survey of general-

purpose computation on graphics hardware,” in proceedings

of EUROGRAPHICS, 2005, available at

http://www.idav.ucdavis.edu/func/return_pdf?pub_id=907.

 [3] “NVIDIA CUDA Programming Guide Version 2.3,”

available at http://developer.download.nvidia.com/compute/

cuda/2_3/toolkit/docs/NVIDIA_CUDA_Programming_Guide

_2.3.pdf.

[4] “ATI Close-To-Metal (CTM) Guide Version 1.01,”

available at

http://ati.amd.com/companyinfo/researcher/documents/

ATI_CTM_Guide.pdf.

 [5] Nikunj Raghuvanshi, Nico Galoppo, and Ming C. Lin,

“Accelerated wave-based acoustics simulation,” in SPM ’08:

Proceedings of the 2008 ACM symposium on Solid and

physical modeling, New York, USA, 2008, pp. 91–102, ACM.

 [6] Marcin Jedrzejewski and Krzysztof Marasek,

“Computation of room acoustics using programmable video

hardware,” in International Conference on Computer Vision

and Graphics ICCVG’2004, Warsaw, Poland, 2004.

[7] Niklas Röber, Ulrich Kaminski, and Maic Masuch, “Ray

acoustics using computer graphics technology,” in Conference

on Digital Audio Effects (DAFx-07) proceedings, Bordeaux,

France, 2007.

http://www.idav.ucdavis.edu/func/return_pdf?pub_id=907

 ISSN: 2456-219X

Journal Of Mechanical Engineering And Biomechanics Volume 09 Issue 1 March 2024

40

 [8] Qiong Zhang, Lu Ye, and Zhigeng Pan, “Physically-based

sound synthesis on GPUs,” Entertainment Computing-ICEC

2005, pp. 328–333.

 [9] Dimitris Theodoropoulos, Catalin Bogdan Ciobanu, and

Georgi Kuzmanov, “Wave field synthesis for 3d audio:

architectural prospectives,” in CF ’09: Proceedings of the 6th

ACM conference on Computing frontiers, Ischia, Italy, 2009.

 [10] Eric Battenberg and David Wessel, “Accelerating

NonNegative Matrix Factorization for Audio Source

Separation on Multi-Core and Many-Core Architectures,” in

10th International Society for Music Information Retrieval

Conference (ISMIR 2009), Kobe, Japan, 2009.

[11] Nicolas Tsingos, “Using programmable graphics

hardware for acoustics and audio rendering,” in proceedings

of the 127th AES Convention, New York, USA, 2009.

[12] Alexey Smirnov and Tzi-cker Chiueh, “An

Implementation of a FIR Filter on a GPU,” 2005, available at

http://www.ecsl.cs.sunysb.edu/fir/fir.ps.

 [13] Emmanuel Gallo and Nicolas Tsingos, “Efficient 3D

audio processing with the GPU,” in GP2, ACM Workshop on

General Purpose Computing on Graphics Processors, 2004.

[14] Brent Cowan and Bill Kapralos, “Spatial sound for video

games and virtual environments utilizing real-time gpubased

convolution,” in Proceedings of the 2008 Conference on

Future Play, New York, NY, USA, 2009, ACM.

[15] Brent Cowan and Bill Kapralos, “Real-time gpu-based

convolution: a follow-up,” in Proceedings of the 2009

Conference on Future Play on @ GDC Canada, Vancouver,

Canada, 2009.

 [16] F. Trebien and M.M. Oliveira, “Realistic real-time sound

resynthesis and processing for interactive virtual worlds,” The

Visual Computer, vol. 25, no. 5, pp. 469–477, 2009.

 [17] Michael Rush, “Convolution engine utilizing NVIDIA’s

G80 processor,” available at

http://www.ece.ucdavis.edu/mmrush/mmrush_eec277_final ˜

_writeup.pdf.

 [18] T.G. Stockham Jr, “High-speed convolution and

correlation,” in Proceedings of the April 26-28, 1966, Spring

joint computer conference. ACM, 1966.

[19] Alan V. Oppenheim and Ronald W. Schafer, Discrete-

Time Signal Processing, Prentice Hall Signal Processing

Series. Prentice Hall, 1989.

[20] Barry D. Kulp, “Digital equalization using fourier

transform techniques,” Journal of the Audio Engineering

Society, 1988.

[21] Anders Torger and Angelo Farina, “Real-time partitioned

convolution for ambiophonics surround sound,” IEEE

Workshop on the Applications of Signal Processing to Audio

and Acoustics, pp. 195–198, 2001.

 [22] E. Armelloni, C. Giottoli, and A. Farina,

“Implementation of real-time partitioned convolution on a

DSP board,” pp. 71–74, 2003.

http://www.ecsl.cs.sunysb.edu/fir/fir.ps

